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The aim of this study was to determine the relationship between natural 
frequency of vibration, the height of the structure, the stiffnesses of members 
and number bays of a structure. The relationship was to be developed based on 
data obtained using two methods. The methods were theoretical and 
experimental. In the theoretical method Computer Modeling was done based on 
structural theory. In the experimental method physical prototypes of structures 
were made to vibrate freely. 
In the theoretical approach, a matrix approach a computer program which 
generated structural models was developed using a matrix method. A horizontal 
force would be input   at a top joint of each model and deflection at the centre of 
mass was calculated. The deflection was the amplitude of vibration. The 
stiffness of the structure was then calculated using the structural amplitude 
obtained. The stiffness would then be used to calculate the natural frequency of 
vibration for the structural model.  
In the experimental approach, physical miniature structures were fabricated with 
different heights, member stiffnesses and number of bays. An increasing force 
would be applied on each structure using a magnet which would release it, at a 
certain magnitude of force, to vibrate freely. Deflections against time at the 
centre of mass were then measured using an horizontal motion transducer. The 
transducer has a probe which gets depressed on contact with a vibrating object. 
The instrument was connected to a TDS 302 data-logger which displayed 
deflection against time on a screen. 
Analysis of data obtained from the two approaches was done using a graphical 
method. The experimental data correlated very closely to the theoretical data. 
The results of the analysis enabled development of a formula for obtaining the 
natural frequency of vibration using the various parameters. The formula will aid 
the engineering design of tall buildings such that they do not resonate with the 
forces acting on them. In this way it will be possible to avoid catastrophic 
resonance disasters. 
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INTRODUCTION 

Background 

Structures undergo free vibrations if oscillations are induced when there is no further 
energy input into the structure. The frequencies of vibration during free vibrations are the 
natural frequencies. When energy is continuously input into a structure, forced vibrations 
occur. The source of such energy can include wind, earthquake and machines. When input 
of energy into a vibrating structure is done at the same frequency as the natural frequency 
of the structure, resonance occurs. The resonance causes the vibrations to reach very high 
magnitudes and may lead to collapse of the structure.  

The parameters associated with vibration characteristics are; natural frequencies, modal 
shapes and modal damping ratios (Arakawa & Yamamoto, 2004). Variations on vibration 
characteristics reflect changes in the physical parameters of the structural system and 
indicate certain cracks or damages caused by failure of members in the system (Arakawa 
& Yamamoto, 2004). 

Winds have different frequencies ranging from 0.6Hz to over 70Hz. Wind tunnel 
simulations have been used to determine these frequencies. Thousands of tornadoes occur 
each year in various parts of the world. These tornadoes cause major destruction of lives 
and property. The destruction is more where the frequency of vibration of the building 
structure is the same as that of the tornado. A structure whose frequency of vibration is 
different from that of the tornado is sometimes left standing whereas a structure which 
has the same frequency as the tornado is destroyed. Speed plays an important role in 
governing the effects of resonance. Fast-moving tornadoes may affect stiffer or smaller 
buildings while slow-moving tornadoes with lower frequencies may affect taller or flexible 
buildings (Dutta, et al., 2002). An awareness of both tangential and translation speed may 
be essential to the understanding of damage caused by a specific tornado event on a 
building. 

The earthquake of September 1985 in Mexico City provided a striking illustration of how 
resonance can have disastrous effects on structures. Most of the buildings which collapsed 
during the earthquake were on average twenty stories high. These had a natural frequency 
of vibration of about 0.5Hz. These twenty storey buildings were in resonated with the 
earthquake. Other buildings, of different heights and with different natural frequencies, 
were often found undamaged even though they were located right next to the damaged 
buildings. There were five parameters that affected the seismic performance. These 
included the degree of regularity, redundancy of structure, relation between the natural 
frequency of the structure and the frequency of the earthquake, the stiffness of the 
structure, and the ability to sustain cycles of inelastic deformation without a loss in 
strength (Bertero, 1989). 

An example of catastrophic resonance failure is the failure of the Basse-Chaine Bridge 
in France in 1850. Many soldiers were marching over the bridge when it collapsed. A 
storm caused the bridge to vibrate in resonance with the wind. The soldiers' efforts to 
avoid falling off the bridge inadvertently caused them to match at the natural 
frequency of the structure. This resonance largely contributed to the catastrophic 
failure (Dupuit, et al., 1850). In a different case in Bangladesh, the collapse of a factory 
was partly attributed to resonance between the factory machines and the building 
(Schilling, 2013).   



Asian Journal of Applied Science and Engineering, Volume 5, No 1/2016                                                                          ISSN 2305-915X(p); 2307-9584(e) 

Copyright © CC-BY-NC 2014, Asian Business Consortium | AJASE                                                                                                    Page 73 

 

The foregoing illustrates catastrophic resonance where the natural frequency of the 
structure is the same as that of the force acting on it. It is therefore necessary to gain a 
better understanding of the relationship between the natural frequency and the 
dimensions of a structure. Such a relationship will inform engineering design of structures 
for various forces expected to act on them. This way, it will be possible to reduce 
destruction of property and lives. Moreover, engineers will be able to detect structural 
deterioration based on changes of frequency of vibration. In addition engineers will also 
be able to minimize discomfort to users by avoiding resonance during vibrations in 
buildings. 

Problem statement 

In a past study where computer modeling was utilized (Verma & Ashish, 2011) it was 
found that the natural frequencies of vibration of structures decreased with increase in the 
height of the structure. The study was undertaken for structures where members were 
either vertical or horizontal. In the study, two-dimensional structures were considered 
instead of three-dimensional as proposed in this research. Moreover, no formulation was 
done for the relationship between the natural frequency and horizontal length of the 
structure or the stiffnesses of structural members.  This research aimed at derivation of the 
mathematical model for the relationships in three dimensional structures.  

Objective of the study 

The main objective of this study was to model the relationship between natural frequency 
of vibration of a structure, its height, the stiffnesses of its members and the number of 
bays.  

The specific objectives were: 

 To use stiffness matrix method to develop software capable of analysing deflections 
for given initial horizontal forces acting on a structure. The software was to be used to 
simulate free vibrations and calculate the deflections against time. This was to be done 
for structures with different heights, number of bays and structural member 
stiffnesses. 

 To make steel model structures and subject them to free vibrations by applying initial 
horizontal forces. The horizontal deflections against time for the free vibrations were 
to be measured. This was to be repeated for structures of different heights, number of 
bays and structural member stiffnesses. 

 To model the relationship between natural frequency, the height of structure, the 
number of bays and the stiffnesses of the structural members.  

Justification of the study 

It is important to study natural frequencies of vibration in structures because excessive 
vibrations due to resonance have been known to cause collapse of the structures. If 
designers had information regarding the natural frequencies of vibration of the structures 
under design, there would be a reduced possibility of resonance of the structures under 
the forces they are likely to be subjected to in their life spans.  

Scope of the study 

The scope of the study is two dimensional vibrations for the first mode of vibration. It is 
assumed that the maximum horizontal deflection is at the top of the structure. 
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THEORETICAL AND CONCEPTUAL FRAMEWORK 

Theoretical Framework 

The theoretical framework for this research is outlined in the remaining section of this Chapter. 

Theory and Code for Computer Modeling 

Based on the theory given in this Chapter, software, named “Structuresoft”, was developed to 
simulate free vibrations and calculate deflections against time. The computer code is given in 
the appendix.  A three dimensional structure has six degrees of freedom at each joint which can 
fully move. Similarly, a structure with twelve fully movable joints has seventy two degrees of 
freedom at the fully movable joints. Such a structure has seventy two natural frequencies at the 
joints due to seventy two degrees of freedom.  However in this research one degree of freedom 
at the centre of gravity is of interest. Therefore after analyzing the structure for the initial 
deflection at all the degrees of freedom at the joints, interpolation was used to determine the 
idealized initial horizontal deflection at the centre of gravity of the structure. 

The stiffness matrix that was assembled to analyze structures was of the form; 

K1,1  K1,2 K1,3 -------------------K1,n 
K2,1 K2,2 K2,3--------------------K2,n 

Kn,1 Kn,2 -------------------------Kn,n 

Where K i j is the force in coordinate i due to a unit deflection in coordinate j 

 and n is the total number of joints. 

The relationship between the external force, the stiffnesses, the deflections, and the 
internal forces at coordinates 1 and 2 is given by equations 1 and 2: 

0=P1+P1’ +K 11 ∆1+K 12 ∆2+K13∆3---------------K1n∆n ----------------Equation 1 
0=P2+P2’ +K21∆1+K22∆2+K23∆3----------K2n∆n ----------------------Equation 2 
The equations in the other coordinates are similar. 

The general expression for equations 1 and 2 is given by equation 3; 

0=PJ+PJ’ +KJ1∆1+KJ2∆2+KJ3∆3------------K Jn ∆n----------------------Equation 3 

Where PJ is the external  force at coordinate J, PJ’ is the internal force at coordinate J and 
∆1,∆2,∆3-----------∆n are deflections at coordinates  1,2,3---- up to n. The force can be in KN 
or be a moment in KNm. 

Enumeration of Coordinates  

It is necessary to enumerate coordinates by considering the degrees of freedom at all the joints. 
The maximum number of degrees of freedom in space for any joint is six as described below: 
1. Linear displacement in X-direction 
2. Linear displacement in Y-direction  
3. Rotation about Z-axis 
4. Linear displacement in Z-direction 
5. Rotation about Y-xis 
6. Rotation about X-axis 

If a joint is a support, it has zero degrees of freedom unless restraint is removed in any of 
the above mentioned degrees of freedom. 
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Calculation of Stiffnesses for Various Coordinates  for  a Given Member  

Consider a member with two joints J1 and J2 at the left and right respectively. The XYZ axes are 
shown in Figure 1. The displacement coordinates at the two end joints are shown in Figure 2. 

 
Figure 1: XYZ AXES 

 
Figure 2: The Displacement Coordinates at the 2 ends of a Structural member 

Joint 1 has coordinates 1 to 6. Coordinate 1 represents displacement in the x –direction, 2 
represents deflection in the y-direction, 3 represents rotation about the z-axis, 4 represent 
displacement in the z-direction, 5 represents rotation about the y-direction and 6 
represents rotation about the x-axis. 

Joint 2 have coordinates 7 to 12. Coordinate 7 is a deflection in the x-axis, coordinate 8 is a 
deflection in the y-axis, coordinate 9 is a rotation about the z-axis, and coordinate 10 is a 
deflection in the z-axis, coordinate 11 is a rotation about the y-axis and coordinate 12 is a rotation 
about the x-axis. The equilibrium condition of the members is described in equation 4. 

0=External load +Internal load+ sum of (stiffness x deflection) at any coordinate----Equation 4 

Simulation of Vibrations 

The model structures were subjected to an initial horizontal force Fot at one of top most joints 
to cause deflection xot at the top and deflection xo at the centre of mass. The deflection at the 
centre of mass was calculated based on the deflection at the top using interpolation. The 
structures were thereafter released to undergo free vibrations. The overall stiffness of the 
structure Ko is defined as the force required at the top to cause a unit horizontal deflection at 
the centre of mass. Application of the force at the top results in the first mode of vibrations. 
For theoretical approach, the deflections at the centre of mass were determined by use of the 
model structure’s stiffness matrices. On the other hand, in the experimental approach the 
deflections were physically measured. The force applied at the top is divided by the 
deflection at the centre of mass to give the stiffness of the structure Ko. 
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Newton’s second law of motion (which states that force =mass * acceleration) governs the 
relationship between the overall structure’s stiffness, Ko, the horizontal deflection, x, the 
acceleration, a and total mass of the structure, m. 

Total Mass* acceleration=stiffness *deflection at the centre of mass, which is given by 
equation 5 below. 

m*a=Ko*x  -------------------------------------------Equation 5 

Equation 5 is also the same as equation 6 after inclusion of displacement and time in place 
of acceleration. 

m.d2x/dt2=-Kox ---------------------------------------Equation 6 

This is a second order differential equation 

To determine Ko, a horizontal force Fot   at a top joint of the structure is first input in a 
computer programme, which does a calculation of the deflection, xo, of the structure at the 
centre of mass. 

The stiffness Ko is then calculated using equation 7 below; 

Ko =Fot /xo----------------------------------------------Equation 7 

The angular velocity, W, is then calculated as follows; 

W=√( Ko /m)-------------------------------------------Equation 8 

From equation 8, the eigen frequency f and vibration period T are derived, according to; 

𝑓 = 𝑊/2𝜋=(1/2𝜋)(√( 𝐾𝑜 /𝑚)-------------------------Equation 9 

and 𝑇 = 1/𝑓 = 2𝜋/𝑊 = 2𝜋√(
𝑚

𝐾𝑜
)------------------Equation 10 

At any time, t, the horizontal deflection, x(t) at centre of mass is given by  

x(t)=x oc *sin(Wt+Φ)-----------------------------------Equation 11 

where x oc is initial deflection at centre of mass.  

MATERIALS AND METHODOLOGY 

Free Vibration Models 

In the experimental method, three dimensional physical models of multi-storey structures were 
built using mild steel bars. The miniature structures had different heights and height to total 
horizontal length ratios. The miniature structures were subjected one at a time to an initial 
horizontal force at one of the highest joints and then released to vibrate freely. To avoid 
eccentricity due to horizontal loading where there was no top joint centrally placed 
horizontally, two equal initial forces were applied simultaneously to two top joints which were 
equidistant from the line of symmetry of the model. 

 
Figure 3: Diagram showing a model and the initial load horizontal load at the top 
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The deflections against time due to the free vibrations were measured at the centre of mass 
using horizontal motion transducers. The initial horizontal force was varied for each 
miniature structure. For each new initial horizontal force, the deflections against time were 
measured for each model structure. This enabled determination of the average frequency 
of vibration for each model. The force was applied using a magnet which would lose 
contact with the model at a load of 0.05KN. The miniature structures were mounted on 
concrete base using stiffened base plates and bolts to ensure there was no movement at 
base joints.  The Data logger and horizontal motion transducer are shown in Figures 4 and 
4b respectively. 

 
Figure 4: Horizontal Motion Transducer 

 
Figure 4b –Data Logger 

Simulation of Vibrations  

In the theoretical method, software, named “Structuresoft”, developed in Visual Basic 
language using the stiffness matrix theory simulated vibrations.  

A starting force, applied at the top joint, induced free vibrations in the software generated 
model structures. The software computed the deflections at the top joint where the force 
was applied. The software then calculated the deflection at the centre of mass and the 
stiffness of the structure (K), whereby, the structure stiffness, 𝐾 = 𝐹𝑜𝑟𝑐𝑒 𝐴𝑝𝑝𝑙𝑖𝑒𝑑/

𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛. It thereafter calculated the frequency, F, using formula 𝐹 = (1/2(3.14))√(𝐾/
 𝑀)  where M= mass of the structure.  



Mutala: Modeling Natural Frequencies of Vibration of Three Dimensional Frames under Two Dimensional Loading                                                     (71-92) 

Page 78                                                                                                                                                                 Volume 5, No 1/2016 | AJASE 

 

Miniature structures 

The table below displays the miniature structures, which were   subjected to free vibrations: 

Table 1: Unbraced Miniature Structures Subjected to Free Vibrations  
Miniature 
Structure 
number 

Height 
(mm) 

Bay 
length 
(mm) 

Number of 
bays in 

x-direction 

Number 
of bays in 
z-direction 

Floor to 
floor height 

(mm) 

Member type 
and size 

1 2100 150 1 1 150 6mm by 6mm square section steel 

2 1800 150 1 1 150 6mm by 6mm square section steel 

3 1500 150 1 1 150 6mm by 6mm square section steel 

4 1200 150 1 1 150 6mm by 6mm square section steel 

5 900 150 1 1 150 6mm by 6mm square section steel 

6 1500 150 1 1 150 6mm by 6mm square section steel 

7 1500 150 1 2 150 6mm by 6mm square section steel 

8 1500 150 1 3 150 6mm by 6mm square section steel 

9 1500 150 1 4 150 6mm by 6mm square section steel 
 

The miniatures structures were either 1 bay by 1bay or 1 bay in one direction and several 
bays in the other direction as shown in Table 1. It was not desirable to work with 
miniature structures with more than 1 bay in both x and z direction since such structures 
would be too stiff to achieve a measurable deflection given the equipment used. The 
miniature structures were properly bolted on reinforced concrete bases to avoid 
movement of the bottom most joints. 

 
Figure 5: Sample of unbraced model structures 

Relationship between Natural Frequency and Dimensions 

The output of the theoretical method utilized the computed frequencies of vibration for a 
sample of models of varying dimensions. The experimental method used values of 
deflection due to loading at the centre of mass at a given time for each model. The results 
were used to estimate the experimental frequencies of vibration (F).  

Using a graphical method, analysis of the data obtained was done. The data arising from 
the two approaches described above were used to plot graphs of natural frequency against 
the model height for a given model horizontal length on a logarithmic scale. Moreover, the 
frequencies were plotted against the vertical member stiffnesses, horizontal member 
stiffness and number of bays for a given model height and length on a logarithmic scale. 
Recording was done of the intercepts of the plotted curves on the vertical axis and 
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gradient of the graphs. These values were used to determine the relationship between the 
natural frequency of vibration, height of the structure, member stiffnesses and the number 
of bays. Comparison was done of the results obtained by the two methods. The results 
prediction based on the literature was that the frequency of vibration would decrease as 
the as the height of the structure increased. 

DISCUSSION OF RELATIONSHIP BETWEEN FREQUENCY AND VARIOUS PARAMETERS 

In this section, discussion is done of the experimental and the theoretical results. 

Unbraced single bay frames  

The relationship between the theoretical natural frequency and height of unbraced one bay 
structure is shown in Figure 6. 

 
Figure 6: Log10F against Log10H for unbraced one bay miniature structures-Theoretical 

 
Figure 6b: Log10(F) Versus Log10(H) for unbraced miniature structures-experimental 

In the theoretical case Log10F=C10-0.72Log10H based on Figure 6. Therefore in the 
theoretical case F=C2/H0.72 with r2 value of 0.42. In the experimental case the relationship 
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formula based on the graph in Figure 6b is:  log10 (F) =C1-0.75log10 (H) where C1 is a 
constant. Therefore frequency, F=C2/H0.75 with r2 value of 0.95 where C2 is a constant and 
H is the height of the structure. This is valid for given stiffness of members and given 
number of bays and given mass of structure. 

Braced single bay frames 

 
Figure 7: Theoretical Log 10 (F) vs Log 10 (H) for braced 1 bay structure 

In the theoretical case, based on Figure 7, Log10F=C3-1.53Log10H where C3 is a constant. 
Therefore in the theoretical case F=C4/H1.53   with r2 value of 0.44 where C4 is a constant. 
Similarly, in the experimental case it  was found that log10 (F) =C3-0.8log10 (H) where C3 
is a constant from the Figure. Therefore for braced case F=C4/H0.8 with r2 value of 0.19 
where C4 is a constant.  

Increase in Number of bays Parallel to direction of vibration 

 
Figure 8: Theoretical log 10 F against Log 10 Npr in stiffer direction motion 
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In the theoretical case, the relationship between Log 10 F and Log 10 N where the number of 
bays increased and motion is parallel to the stiffer direction is shown in Figure 8. The 
relationship for the experimental case is shown in Figure 8b. 

 
Figure 8b: Log10 (Frequency, F) VsLog10 (Number of bays, Npr), in stiffer Direction 
Motion-Experimental 

In the theoretical case, Log10 F=C9+0.68Log10Npr. Therefore F=C10*Npr 0.68 with an r2 value 
of 0.23 based on Figure 8. In the experimental case, based on the graph in Figure 8b, log 
10(F) =C9+0.68 log10 (Npr) with an r2 value of 0.19 where C9 is a constant. Therefore, in the 
experimental case F=C10*(Npr0.68) where C10 is a constant.  

Increase in Number of bays Perpendicular to direction of vibration 

 
Figure 9: Log 10F against log 10 (Npp) as the number of bays increase in one direction-
Motion parallel to less stiff direction-Theoretical 
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Figure 9b: Log10 (F) against Log10 (Npp) for motion perpendicular to stiffer direction-
Experimental 

In the theoretical Log10F=C5-0.28Log10 (Npp) based on Figure 9 where C5 is a constant. 
Therefore in this case F=C6/Npp

0.28  where C6  is a constant with r2 value of 0.997. In the 
experimental case, based on Figure 9b, the relationship between Log10F and Log10Npp is: 
Log10 (F) =C5+1.17log10 (Npp) where C5 is a constant. Therefore for motion in less stiff 
direction experimental case, F=C6*Npp1.17 with r2 value of 0.92 

Change of Natural frequency as the Column Stiffness Increases 

 
Figure 10: Log10 (F) against Log10 (Sv) -Theoretical 

In the theoretical case, the relationship between log10 (F) and log10(Sv) is shown in Figure 
10 where F is the frequency, and Sv is the column stiffness ratio (I/L). 
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Figure 10b: Log 10(Frequency, F) against log10 (Column stiffness, Sv)-Experimental 

In the theoretical case Log10F=C10+1.4Log10Sv based on Figure 10 where C10 is a constant. 
Therefore, F=C11*Sv1.4 with r2 value of 0.94. In the experimental case the relationship 
between F and Sv is log 10 (F) =C10+1.7Log10 (Sv) where C10 is a constant, based on Figure 
10b. Therefore,  F=C11*Sv1.7 where C11 is a constant, with an r2 value of 0.92.  

Change in horizontal stiffness parallel to motion 

 
Figure 11: Theoretical Log10 (F) against log10 (Spl) where stiffness of horizontal members 
varies parallel to horizontal deflection 



Mutala: Modeling Natural Frequencies of Vibration of Three Dimensional Frames under Two Dimensional Loading                                                     (71-92) 

Page 84                                                                                                                                                                 Volume 5, No 1/2016 | AJASE 

 

  
Figure 11b: Experimental Log10(F) VS Log10(Spl) for motion parallel to change in horizontal 
stiffness 

In the theoretical case Log10F=C15-1.59Log10Spl where C15 is a constant based on Figure 11. 
Therefore, F=C16/(Spl1.59) with an r2 value of 0.96. In the experimental case the 
relationship between log10 (F) and Log10 (Spl) is shown in Figure 11b.The relationship is: 
log10(F)=C15-1.83*Log10(Spl) where C15 is a constant. Therefore F=C16/((Spl)1.83) with an r2 
value of 0.58 .  

Change Horizontal Member Stiffness Perpendicular to motion 

 
Figure 12: Theoretical Log10(F) against Log10(Spp) where stiffness of horizontal member 
stiffness varies perpendicular to motion. 
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Figure 12b: Experimental Log 10(Frequency, F) against Log10 (Stiffness, Spp) 

In the theoretical case Log10F=C18+0.33Log10Spp where C18 is a constant based on Figure 
12. Therefore in the theoretical case F=C19*spp0.33 with r2 value of 0.6. In the experimental 
case the relationship between Log 10(F) and log 10(Spp) is shown in Figure 12b. The 
relationship is: Log10 (F) =C18+0.23*Log10 (Spp) where C18 is a constant. Therefore in the 
experimental case F=C19*Spp0.23   with r2 value of 0.12.  

Change in scale of miniature structure  

 
Figure 13: Theoretical Log 10 (F) against Log 10 (Sc) 

 
Figure 13b: Log 10(Frequency,F)Vs Log10(Scale ,Sc) 
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In the theoretical case, based on Figure 13, Log10F=C20-1.24Log10Sc where C20 is a constant. 
Therefore in the theoretical case  F=C21/(Sc1.24)  with r2 value of  0.99. In the experimental 
case, the relationship between log10(F) and Log10(Sc) is shown in Figure 13b. The relationship 
is: Log 10(F)=C20-0.9Log10(Sc) where C20 is a constant. Therefore in the experimental case for 
varying scale models, F=C21/(Sc0.9) with r2 value of 0.98 where C21 is a constant. 

RELATIONSHIP BETWEEN THE EXPERIMENTAL AND THEORETICAL VALUES 

The theoretical values of natural frequencies had the same trend of variation with number of bays 
and stiffness as the experimental. However the experimental values were higher in most cases. 

Relationship between Theoretical and Experimental results for unbraced 1 bay 
miniature structures 
The graph below shows the relationship. 

 
Figure 14: Comparison of Theoretical and Experimental frequencies for unbraced 1 bay structure 

The experimental values of natural frequencies for 1 bay unbraced frames were lower than 
the theoretical values as shown in Figure 14. However, the frequencies for experimental 
case are expected to be lower than the theoretical ones due to damping. There was positive 
correlation between the two sets of values. The correlation coefficient was 0.99. 

Relationship between Theoretical and Experimental results for braced 1 bay miniature structures 

The graph below shows the relationship. 

 
Figure 15: Comparison of Theoretical and Experimental frequencies for braced one bay structure 
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The experimental values of natural frequencies for one bay braced frames were lower than 
the theoretical values as shown in Figure 15.  Section 4.3 discusses the difference, which is 
mainly due to errors. However, the frequencies for the experimental case frequencies are 
expected to be lower than the theoretical ones due to damping. There was a positive 
correlation between the two sets of values. The correlation coefficient was 0.99. 

Relationship between Theoretical and Experimental results as the number of bays 
increased in the direction of motion. 

The experimental values of vibration frequency were mostly lower than the theoretical 
values as the number bays increased in the direction of motion as shown in Figure 16. 
However the experimental case frequencies are expected to be lower than the theoretical 
ones due to damping. There was positive correlation between the two sets of values. The 
correlation coefficient was 0.99. 

 
Figure 16: Comparison of Theoretical and Experimental frequencies as the number of bays 
increased for unbraced Models (Motion in stiffer direction). 

Relationship between Theoretical and Experimental results as the Number of bays 
increased in the direction perpendicular to Motion 

 
Figure 17: Comparison of Theoretical and Experimental frequencies as number of bays 
increased for unbraced miniature structures (Motion in less stiff direction). 
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The experimental values of natural frequencies, as number bays increased in one direction, were 
generally lower than the theoretical values as shown in Figure 17. However, the experimental 
case frequencies are expected to be lower than the theoretical ones due to damping. There was a 
positive correlation between the two sets of values. The correlation coefficient was 0.99. 

Relationship between Theoretical and Experimental results as stiffness of columns increased  

The experimental values of natural frequencies were lower than the theoretical values as 
shown in Figure 18. Sources of Error section discusses the difference, which is mainly due 
to errors. However, the experimental case frequencies are expected to be lower than the 
theoretical ones due to damping.  There was a positive correlation between the two sets of 
values. The correlation coefficient was 0.98. 

 
Figure 18: Comparison of Theoretical and Experimental frequencies as column stiffness 
increased for unbraced Models. 

Relationship between Theoretical and Experimental results as stiffness of horizontal 
Members increased parallel to the initial force direction 

The graph below shows the relationship. 

 
Figure 19: Comparison of Theoretical and Experimental frequencies as the stiffnesses for 
horizontal members parallel to initial force direction increased. 
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The experimental values of natural frequencies were lower than the theoretical ones as 
shown in Figure 19. Sources of Error section discussed the difference, which is mainly due 
to errors. However, the experimental case frequencies are expected to be lower than the 
theoretical ones due to damping. There was a positive correlation between the two sets of 
values. The correlation coefficient was 0.88 

Relationship between Theoretical and Experimental results  as stiffness  of horizontal   
increased perpendicular to initial force direction 

Figure 20 shows the experimental values of natural frequencies were lower than the 
theoretical ones. Sources of Error section discusses the difference, which is mainly due to 
errors. However, the experimental case frequencies are expected to be lower than the 
theoretical ones due to damping. There was a positive correlation between the two sets of 
values. The correlation coefficient was 0.97. 

 
Figure 20: Comparison of Theoretical and Experimental frequencies as the horizontal 
member stiffnesses increased perpendicular to initial force direction. 

Relationship between Theoretical and Experimental results as the scale factor increased  

 
Figure 21: Comparison of Theoretical and Experimental frequencies as scale factor increased. 
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The experimental values of natural frequencies were higher than the theoretical values as 
shown in Figure 21. Sources of Error section discusses the difference, which is mainly due to 
errors. There was a positive correlation between the two sets of values. The correlation 
coefficient was 0.99. 

Most of the r2 values for the theoretical case were better than the corresponding ones for 
the experimental. Moreover, the experimental frequencies are reduced by damping. Since 
there was an input of a large quantity of data, errors may have occurred leading to some 
of the difference between the theoretical and experimental values. It is better to adopt a 
formula based on an average of the two methods. 

Sources of Error     
The sources of error in the experiments are the following. 

 Due to errors in making miniature structures 

 Due to inaccuracies in reading the wave lengths from data logger 

 It was assumed that damping was zero but in reality there was some damping even 
from the air around and internal structural damping. The damping reduced 
experimental frequencies. 

 Data entry errors in the theoretical case as input of a large quantity of data were done. 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The study was found the following relationships: 

 The relationship between natural frequency, F, and Height of structure, H, for given 
column and beam length or column and beam stiffness  as: F=C2/H0.735 which is an 
average between the theoretical and experimental value. 

 The relationship between natural frequency, F, and the number of bays, parallel to 
motion, Npr, as F=C10*(Npr

0.74) which is an average between the theoretical and 
experimental value. 

 The relationship between natural frequency, F, and number of bays, perpendicular to 
motion, Npp, as F=C6*((Npp)0.445)which is an average between the theoretical and 
experimental value. 

 The relationship between natural frequency, F, and stiffness of vertical members, Sv, 
as F=C11*(Sv1.55) which is an average between the theoretical and experimental value. 

 The relationship between natural frequency, F, and stiffness of horizontal members 
parallel to motion, Spl, as F=C16/(Spl

1.71) which is an average between the theoretical 
and experimental value. 

 The relationship between natural frequency, F, and stiffness of horizontal members 
perpendicular to motion, Spp, as F=C19*(Spp

0.28) which is an average between the 
theoretical and experimental value. 

Therefore, a comprehensive formula for the natural frequency of vibration for unbraced 
structures is F=C*(1/H0.735)*(Npr

0.74))*(Npp
0.445)*(Sv

1.55)*(1/(Spl
1.71))*Spp

0.28 where C is a constant 
depending on material type. This equation is based on an average of the theoretical and 
experimental model. 

In the theoretical case by taking a particular case where there is 10 storeys unbraced model 
of 150mm long members, H=1500mm, Npr =1, Npp=1, Sv=0.72mm3, Spl =0.72mm3, 
Spp=0.72mm3 and frequency=1.73 Hertz, gives an approximate value of C=389 in the case 
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of steel structures. In the experimental case taking the same parameters of a structure 
frequency=1.58 Hertz and C= 354. Therefore average value of C=371.The formula is in line 
with the existing literature on natural frequencies. However no formula has been given 
like this before. 

Recommendations 

There is need to conduct further studies for other modes of vibrations and more bays in 
both directions. There is also need to determine the K value for other materials other than 
steel. There is need to conduct further research using Finite Element Method where 
deflections at centre of mass are estimated more accurately. Moreover, data should be 
gathered of earthquake frequencies in various geographical regions to guide design 
against resonance of structures to earthquake vibrations. 
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